top of page
Search
  • Writer's pictureRaymond Wong

New publication: Understanding the genes that contribute to AMD

A/Prof Raymond Wong's team has found the gene POLDIP2 play a role in regulating oxidative stress – a part of ageing in the macula. The findings provide a deeper understanding of the underlying causes of AMD and help prioritise new gene targets for treatments.


Knockout of AMD-associated gene POLDIP2 reduces mitochondrial superoxide in human retinal pigment epithelial cells


Tu Nguyen, Daniel Urrutia-Cabrera, Luozixian Wang, Jarmon G. Lees, Jiang-Hui Wang, Sandy S.C. Hung, Alex W. Hewitt, Thomas L. Edwards, Sam McLenachan, Fred K. Chen, Shiang Y. Lim, Chi D. Luu, Robyn Guymer, and Raymond C.B. Wong


Aging (Albany NY). 2023 Mar 31; 15(6): 1713–1733.



Abstract


Genetic and epidemiologic studies have significantly advanced our understanding of the genetic factors contributing to age-related macular degeneration (AMD). In particular, recent expression quantitative trait loci (eQTL) studies have highlighted POLDIP2 as a significant gene that confers risk of developing AMD. However, the role of POLDIP2 in retinal cells such as retinal pigment epithelium (RPE) and how it contributes to AMD pathology are unknown. Here we report the generation of a stable human RPE cell line ARPE-19 with POLDIP2 knockout using CRISPR/Cas, providing an in vitro model to investigate the functions of POLDIP2. We conducted functional studies on the POLDIP2 knockout cell line and showed that it retained normal levels of cell proliferation, cell viability, phagocytosis and autophagy. Also, we performed RNA sequencing to profile the transcriptome of POLDIP2 knockout cells. Our results highlighted significant changes in genes involved in immune response, complement activation, oxidative damage and vascular development. We showed that loss of POLDIP2 caused a reduction in mitochondrial superoxide levels, which is consistent with the upregulation of the mitochondrial superoxide dismutase SOD2. In conclusion, this study demonstrates a novel link between POLDIP2 and SOD2 in ARPE-19, which supports a potential role of POLDIP2 in regulating oxidative stress in AMD pathology.


Read the publication here.

6 views

Recent Posts

See All
bottom of page